Influence of pH, light, food concentration and temperature in Aedes aegypti Linnaeus (Diptera: Culicidae) larval development

Authors

DOI:

https://doi.org/10.12741/ebrasilis.v15.e999

Keywords:

arboviruses, biotic factors, dengue, metamorphosis, mosquito

Abstract

Aedes aegypti Linnaeus mosquito is a vector of several viruses that cause diseases of medical and veterinary importance. Dengue, yellow fever, Zika and Chikungunya viruses are more important arboviruses transmit by mosquitoes. A. aegypti life cycle goes through 4 stages of development and the time for development from egg to adult mosquito depends on a series of biotic and abiotic factors such as temperature, food availability and population density, studied in different species of insects. In this work we studied the effects of different food concentrations, temperatures variation, pH gradient and luminosity on the development of A. aegypti larvae. The eggs were collected in the city of Tangará da Serra/MT and larvae in the L1 stage were used for the tests. The results showed that all the factors studied interfered in the larval development. The increase in food concentration and temperature accelerated the development of larvae to pupae. The acidic pH (pH = 4) proved to be unsuitable for the development of larvae (100% lethality), with the ideal pH for the development of larval stages being equal to pH = 6. Although in all light variations (dark, light and photoperiod 10L/ 14D) there was complete development of the larvae, the photoperiod test proved to be more adequate. This study helps to better understand the success, dispersion and adaptation of the A. aegypti mosquito in different regions under different environmental conditions.

References

Alto, BW & SA Juliano, 2001a. Precipitation and Temperature Effects on Populations of Aedes albopictus (Diptera Culicidae): implications for range expansion. Journal of Medical Entomology, 38: 646-656. DOI: https://doi.org/10.1603/0022-2585-38.5.646

Alto, BW & SA Juliano, 2001b. Temperature Effects on the Dynamics of Aedes albopictus (Diptera, Culicidae) Populations in the Laboratory. Journal of Medical Entomology, 38: 548-556. DOI: https://doi.org/10.1603/0022-2585-38.4.548

Araujo, RV, MR Albertini, AL Costa-da-Silva, L Suesdek, NC Franceschi, NM Bastos, Katz G, VA Cardoso, BC Castro, ML Capurro & VL Allegro, 2015. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Brazillian Journal Infection Disease, 19: 146-55. DOI: https://doi.org/10.1016/j.bjid.2014.10.004

Aslam, M., DW Hagstrum & BA Dover, 1994. The Effect of Photoperiod on the Flight Activity and Biology of Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Kansas Entomological Society, 67: 107-115.

Bar-Zeev, M, 1958. The Effect of Temperature on the Growth Rate and Survival of the Immature Stages of Aedes aegypti (L.). Bulletin of Entomological Research, 49: 157-163. DOI: https://doi.org/10.1017/S0007485300053499

Calado, DC & MAN Silva, 2002. Avaliação da influência da temperatura sobre o desenvolvimento de Aedes albopictus. Revista de Saúde Pública, 36: 173-179. DOI: https://doi.org/10.1590/S0034-89102002000200009

Calvo, E, VM Pham, O Marinotti, JF Andersen & JMC Ribeiro, 2009. The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics, 10: 57-83. DOI: https://doi.org/10.1186/1471-2164-10-57

Cardoso, AF, RL Cres, AS Moura, F de Almeida & AT Bijovsky, 2010. Culex quinquefasciatus vitellogenesis: morphological and biochemical aspects. Memórias do Instituto Oswaldo Cruz. 105: 254-262. DOI: https://doi.org/10.1590/S0074-02762010000300003

Chocorosqui, VR & AR PanizzI, 2003. Photoperiod influence on the biology and phenological characteristics of Dichelops melacanthus (Dallas, 1851) (Heteroptera: Pentatomidae). Brazilian Journal of Biology. 63: 655-664. DOI: https://doi.org/10.1590/S1519-69842003000400012

Christiansen-Jucht, CD, PE Parham, Saddler, A, JC Koella & MG Basánez, 2015. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.. Parasites Vectors, 8: 456. DOI: https://doi.org/10.1186/s13071-015-1053-5

Ciprandi, A, F Horn & C Termignoni, 2003. Saliva de animais hematófagos: fonte de novos anticoagulantes. Revista Brasileira de Hematologia e Hemoterapia, 25: 250-262. DOI: https://doi.org/10.1590/S1516-84842003000400012

Clark, TM, JF Benjamin & SK Remold, 2004. pH tolerances and regulatory abilities of freshwater and euryhaline Aedine mosquito larvae. Journal of Experimental Biology, 207: 2297-2304. DOI: https://doi.org/10.1242/jeb.01021

Consoli, RAGB & RL Oliveira, 1994. Principais mosquitos de importância sanitária no Brasil. Fiocruz, Rio de Janeiro, Brazil.

Costanzo, KS, RA Dahan & D Radwan, 2016. Effects of photoperiod on population performance and sexually dimorphic responses in two major arbovirus mosquito vectors, Aedes albopictus and Aedes aegypti (Diptera: Culicidae). International Journal of Tropical Insect Science, 36: 177–187. https://doi.org/10.1017/S1742758416000163

Costanzo, KSS, KJ Schelble & M Keenan, 2015. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology, 40: 164-71. DOI: https://doi.org/10.1111/jvec.12146

Couret, J, E Dotson & MQ Benedict, 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera, Culicidae). PLoS One, 9: e87468. DOI: https://doi.org/10.1371/journal.pone.0087468

Dantas, ES, 2011. Avaliação da influência de algumas características do criadouro e da água na frequência de formas imaturas e no tamanho e peso de adultos do mosquito Aedes aegypti (Diptera: Culicidae) no Rio de Janeiro. Dissertação (Mestrado em Medicina Tropical) - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro.

Ebi, KL & J Nealon, 2016. Dengue in a changing climate. Environmental Research, 151: 115-123. DOI: https://doi.org/10.1016/J.envres.2016.07.026

Farnesi, LC, HCM Vargas, D Valle & GL Rezende, 2017. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Neglected Tropical Diseases, 11: e0006063. DOI: https://doi.org/10.1371/journal.pntd.0006063

Fay, RW & AS Perry, 1965. Laboratory studies of ovipositional preferences of Aedes aegypti. Mosquito News, 25: 276-281.

Forattini, OP, 2002. Culicidologia Médica. Identificação, Biologia, Epidemiologia. Vol. 2. São Paulo, Editora Universidade de São Paulo.

Gama, RA, KC Alves, RF Martins, AE Eiras & MC Resende, 2005. Efeito da densidade larval no tamanho de adultos de Aedes aegypti criados em condições de laboratório. Revista da Sociedade Brasileira de Medicina Tropical, 38: 64-66. DOI: https://doi.org/10.1590/S0037-86822005000100014

Garzón, MJ, L Maffey, A Lizuain, D Soto, PC Diaz, M Leporace, OD Salomón & NJ Schweigmann, 2021. Temperature and photoperiod effects on dormancy status and life cycle parameters in Aedes albopictus and Aedes aegypti from subtropical Argentina. Medical and Veterinary Entomology, 35: 97-105. DOI: https://doi.org/10.1111/mve.12474

Gimnig, JE, M Ombok, S Otieno, MG Kaufman, JM Vulule & ED Walker, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. Journal of Medical Entomology, 39:162-72. doi: https://doi.org/10.1603/0022-2585-39.1.162

Kraemer, MU, ME Sinka, KA Duda, AQ Mylne, FM Shearer, CM Barker, CG Moore, RG Carvalho, GE Coelho, W Van Bortel, G Hendrickx, F Schaffner, IR Elyazar, HJ Teng, OJ Brady, JP Messina, DM Pigott, TW Scott, DL Smith, GR Wint, N Golding & SI Hay, 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife, 4: e08347. DOI: https://doi.org/10.7554/eLife.08347

Lopez, LCS, EGB Silva, MG Beltrão, 2011. Effect of tank bromeliad micro-environment on Aedes aegypti larval mortality. Hydrobiologia, 665: 257–261. https://doi.org/10.1007/s10750-011-0605-8

Monteiro, LC, JR Souza, CM Albuquerque, 2007. Eclosion rate, development and survivoship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neotropical Entomology, 36: 966-971. DOI: https://doi.org/10.1590/s1519-566x2007000600021

Natal, D, 2002. Bioecologia do Aedes aegypti. Biológico, 64: 205-207.

Nelson, JM, 1986. Aedes aegypti: Biologia y Ecologia. Organizacion Panamericana de la Salud. Washington, DC.

Paradise, CJ & WA Dunson, 1997. Effects of pH and sulfate on insects and protozoans inhabiting treeholes. Archives of Environmental Contamination and Toxicology, 33:182-187. DOI: https://doi.org/10.1007/s002449900240

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Avaliable in: <https://www.R-project.org>. Access: 10.vi.2015.

Ribeiro, JM & IM Francischetti, 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annual Review Entomology, 48: 73-88. DOI: https://doi.org/10.1146/annurev.ento.48.060402.102812

Reznik, S & N Vaghina, 2011. Photoperiodic control of development and reproduction in Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 108: 385-390. DOI: https://doi.org/10.14411/eje.2011.048

Sanburg, LL & JR Larsen, 1973. Effect of photoperiod and temperature on ovarian development in Culex pipiens pipiens. Journal of Insect Physiology, 19: 1173-1190. DOI: https://doi.org/10.1016/0022-1910(73)90202-3

Saunders, DS, 2014. Insect photoperiodism: Effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomological Science, 17: 25-40. DOI: https://doi.org/10.1111/ens.12059

Steinwascher, K, 2018. Competition among Aedes aegypti larvae. PLoS One, 13: e0202455. DOI: https://doi.org/10.1371/journal.pone.0202455

Ukubuiwe, AC, IK Olayemi, MO Odeyemi, IM Salihu, AI Jibrin, CC Ukubuiwe & RY Yunusa, 2017. Influence of photoperiod on larval growth indices and energy budget for metamorphosis in Culex quinquefasciatus mosquito (Diptera: Culicidae); its implication in integrated vector management. Biotechnology Society of Nigeria 2017 Book of Proceedings.

Ukubuiwe, AC, IK Olayemi, ICJ Omalu, FO Arimoro, BM Baba & CC Ukubuiwe, 2018. Effects of Varying Photoperiodic Regimens on Critical Biological Fitness Traits of Culex quinquefasciatus (Diptera: Culicidae) Mosquito Vector. International Journal of Insect Science, 10: 1179543318767915. DOI: https://doi.org/10.1177/1179543318767915

Villanueva,OK, G Ponce, B Lopez, SM Gutierrez, IP Rodriguez, G Reyes, KJ Saavedra, WC Black, J Garcia, B Beaty, L Eisen & AE Flores, 2016. Effect of photoperiod on permethrin resistance in Aedes aegypti. Journal of The American Mosquito Control Association, 32: 308-314. DOI: https://doi.org/10.2987/16-6577.1

Way, MJ, B Hopkins & PM Smith, 1949. Photoperiodism and Diapause in Insects. Nature 164: 615. DOI: https://doi.org/10.1038/164615a0

Yee, DA, B Kesavaraju & AS Juliano, 2004. Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Annals of the Entomological Society of America, 97 (4): 720-728. DOI: https://doi.org/10.1603/0013-8746(2004)097[0720:idifba]2.0.co;2

Yee, DA, SA Juliano & SM Vamosi, 2012. Seasonal photoperiods alter developmental time and mass of an invasive mosquito, Aedes albopictus (Diptera: Culicidae), across its north-south range in the United States. Journal of Medical Entomology, 49: 825-832. DOI: https://doi.org/10.1603/me11132

Yoshioka, M, J Couret, F Kim, J McMillan, TR Burkot, EM Dotson, U Kitron & GM Vazquez-Prokopec, 2021. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasites Vectors, 5: 225. DOI: https://doi.org/10.1186/1756-3305-5-225

Downloads

Published

2022-10-17

How to Cite

[1]
Torres, P.F.F., Baldinotti, H. da S., Costa, D.A. da, Miranda, C.M. de and Cardoso, A.F. 2022. Influence of pH, light, food concentration and temperature in Aedes aegypti Linnaeus (Diptera: Culicidae) larval development. EntomoBrasilis. 15, (Oct. 2022), e999. DOI:https://doi.org/10.12741/ebrasilis.v15.e999.

Issue

Section

Morphology and Physiology