Nesting stratum and habitat affinity matter in ant assemblage response to forest-pasture shifting
DOI:
https://doi.org/10.12741/ebrasilis.v16.e1024Keywords:
Amazon, biodiversity, bioindication, Formicidae, land-use changeAbstract
Ants have been extensively used as bioindicators, however ants from different nest stratum and habitat affinity groups could distinctly respond to a same ecological process and environmental impact. In this study, we evaluated if nest stratum and habitat affinity matter in the response of ant assemblages to forest-pasture shifting. We tested the response of number of species in entire ant assemblages (soil surface and subterranean) and in each ant fauna stratum (only soil surface and only subterranean). In both cases, we also tested the response of number of ant species of each habitat affinity groups (forest specialist, open-habitat specialist and generalist). Ants were sampled in three plots for each habitat type in Southwestern Brazilian Amazon. We sampled 124 ant species. Only for soil surface ant assemblages, the number of species was different between the two habitats types, among habitat affinity ant groups and their number of species also changed with habitat shifting. Therefore, we corroborate the inclusion of samplings in different nest stratum and recommend the classification of ants according to their habitat affinity in monitoring programs that use ants as bioindicator. However, efforts must be done to improve the information availability on habitat affinity of ant species.
References
Acre, 2010. Zoneamento ecológico-econômico do Acre - fase II (escala 1:250.000). Sema, Rio Branco.
Andersen, AN, 2018. Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 88: 350–362. DOI: https://doi.org/10.1111/1365-2656.12907
AntWeb, 2020. Versão 8.66. California Academy of Sciences. Available in: <https://www.antweb.org/>.
Araújo, EA & JL Lani, 2012. Uso sustentável de ecossistemas de pastagens cultivadas na Amazônia Ocidental. Sema, Rio Branco.
Araújo, EA, JC Ker, ES Mendonça, IR Silva & EK Oliveira, 2011. Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico. Acta Amazonica, 41: 103–114. DOI: https://doi.org/10.1590/S0044-59672011000100012
Arruda, DM, EI Fernandes-Filho, RRC Solar & CEGR Schaefer, 2017. Combining climatic and soil properties better predicts covers of Brazilian biomes. The Science of Nature, 104: 3-4. DOI: https://doi.org/10.1007/s00114-017-1456-6
Baccaro, FB, RM Feitosa, F Fernandez, IO Fernandes, TJ Izzo, JLP Souza & R Solar, 2015. Guia para os gêneros de formigas do Brasil. Editora Inpa, Manaus.
Bates, D, M Maechler, B Bolker, S Walker, RHB Chistensen, H Singman, B Dai, F Scheipl, G Grothendieck, P Green, J Fox, A Bauer & PN Krivitsky, 2020. Package “lme4”: Linear Mixed-Effects Models using “Eigen” and S4. Available in: <https://cran.r-project.org/web/packages/lme4/lme4.pdf>.
Bestelmeyer, BT, D Agosti, LE Alonso, CRF Brandão, WL Brown Jr & JHC Delabie, 2000. Field Techniques for the Study of Ground-Dwelling Ants: An Overview, Description, and Evaluation, pp. 122-128. In Agosti, D, JD Majer, L Alonso & T Schultz (Eds). Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington: Smithsonian institution Press.
Bihn, JH, M Verhaagh, M Brändle & R Brandl, 2008. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological Conservation, 141: 733–743. DOI: https://doi.org/10.1016/j.biocon.2007.12.028
Bolker, BM, ME Brooks, CJ Clark, SW Geange, JR Poulsen, MHH Stevens & JSS White, 2009. Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. Trends in Ecology & Evolution, 24: 127–135. DOI: https://doi.org/10.1016/j.tree.2008.10.008
Crawley, MJ, 2013. The R Book. 2nd ed. Wiley, Chichester.
Daly, DC & M Silveira, 2008. Primeiro catálogo da flora do Acre, Brasil/First catalogue of the flora of Acre, Brazil. Edufac, Rio Branco.
Davidson, EA, AC Araújo, P Artaxo, JK Balch, IF Brown, MMC Bustamante, MT Coe, RS DeFries, M Keller, M Longo, JW Munger, W Schroeder, BS Soares-Filho, CM Souza & SC Wofsy, 2012. The Amazon basin in transition. Nature, 481: 321–328. DOI: https://doi.org/10.1038/nature10717
Fahrig, L, V Arroyo-Rodríguez, JR Bennett, V Boucher-Lalonde, E Cazetta, DJ Currie, F Eigenbrod, AT Ford, SP Harrison, JAG Jaeger, N Koper, AE Martin, JL Martin, JP Metzger, P Morrison, JR Rhodes, DA Saunders, D Simberloff, AC Smith, L Tischendorf, M Vellend & JI Watling, 2019. Is habitat fragmentation bad for biodiversity? Biological Conservation, 230: 179–186. DOI: https://doi.org/10.1016/j.biocon.2018.12.026
Fearnside, PM, 2005. Desmatamento na Amazônia brasileira : história , índices e conseqüências. Megadiversidade, 1: 113–123.
Fisch, G, JA Marengo & CA Nobre, 1998. Uma revisão geral sobre o clima da Amazônia. Acta Amazonica, 28: 101–126. DOI: https://doi.org/10.1590/1809-43921998282126
Fox, J, S Weisberg, B Price, D Adler, D Bates, G Baud-Bovy, B Bolker, S Ellison, D Firth, M Friendly, G Gorjanc, S Graves, R Heiberger, P Krivitsky, R Laboissiere, M Maechler, G Monette, D Murdoch, H Nilsson, D Ogle, B Ripley, W Venables, S Walker, D Winsemius, A Zeileis & R-Core, 2020. Package “car”: Companion to Applied Regression. Available in: <https://cran.r-project.org/web/packages/car/car.pdf>.
MapBiomas, 2018. Coverage. Available in: <https://plataforma.mapbiomas.org/map#coverage>.
Marques, EQ, BH Marimon-Junior, BS Marimon, EAT Matricardi, HA Mews & GR Colli, 2019. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodiversity and Conservation, 29: 1501–1517. DOI: https://doi.org/10.1007/s10531-019-01720-z
Marques, T, MM Espiríto-Santo, FS Neves, & JH Schoereder, 2017. Ant assemblage structure in a secondary tropical dry forest: The role of ecological succession and seasonality. Sociobiology, 64: 261–275. DOI: https://doi.org/10.13102/sociobiology.v64i3.1276
McGeoch, MA, 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews, 73: 181–201. DOI: https://doi.org/10.1111/j.1469-185X.1997.tb00029.x
McKinney, ML & JL Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14: 450-453. DOI: https://doi.org/10.1016/S0169-5347(99)01679-1
Medeiros, H, W Castro, CI Salimon, IB Silva & M Silveira, 2013. Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica, 13: 29–34. DOI: https://doi.org/10.1590/S1676-06032013000200002
Menezes, AS & Schmidt, FA, 2020. Mechanisms of species coexistence and functional diversity of ant assemblages in forest and pasture habitats in southwestern Brazilian Amazon. Sociobiology, 67: 33–40. DOI: https://doi.org/10.13102/sociobiology.v67i1.4552
Morton, DC, Y Le Page, R DeFries, GJ Collatz & GC Hurtt, 2013. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 368. DOI: https://doi.org/10.1098/rstb.2012.0163
Nakamura, A, H Proctor & CP Catterall, 2003. Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration, 4: S20–S28. DOI: https://doi.org/10.1046/j.1442-8903.4.s.3.x
Nakamura, A, CP Catterall, APN House, RL Kitching & CJ Burwell, 2007. The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. Journal of Insect Conservation, 11: 177–186. DOI: https://doi.org/10.1007/s10841-006-9034-9
Oliveira, ABS & FA Schmidt, 2019. Ant assemblages of Brazil nut trees Bertholletia excelsa in forest and pasture habitats in the Southwestern Brazilian. Biodiversity and Conservation, 28: 329–344. DOI: https://doi.org/10.1007/s10531-018-1657-0
Oliveira, PS, B Hölldobler, 1991. Agonistic Interactions and Reproductive Dominance in Pachycondyla Obscuricornis (Hymenoptera: Formicidae). Psyche: A Journal of Entomology, 98: 215–225. DOI: https://doi.org/10.1155/1991/64635
Paolucci, LN, JH Schoereder, PM Brando & AN Andersen, 2017. Fire-induced forest transition to derived savannas: Cascading effects on ant communities. Biological Conservation, 214: 295–302. DOI: https://doi.org/10.1016/j.biocon.2017.08.020
Philpott, SM, I Perfecto, I Armbrecht & CL Parr, 2010. Ant Diversity and Function in Disturbed and Changing Habitats, pp. 137-156. In: Lach, L, C Parr & K Abbott (Eds). Ant Ecology. New York: Oxford University Press.
Pinheiro, JC, & DM Bates, 2000. Mixed-effects models in S and S-PLUS. Springer, New York.
Queiroz, ACM, AM Rabello, DL Braga, GS Santiago, LF Zurlo, SM Philpott & CR Ribas, 2017. Cerrado vegetation types determine how land use impacts ant biodiversity. Biodiversity and Conservation, 29: 2017–2034. DOI: https://doi.org/10.1007/s10531-017-1379-8
R Development Core Team, 2019. R: A language and environment for statistical computing. Version 3.6.1. Available in: <http://www.R-project.org>.
Ribas, CR, RBF Campos, FA Schmidt & RRC Solar, 2012a. Ants as Indicators in Brazil: A Review with Suggestions to Improve the Use of Ants in Environmental Monitoring Programs. Psyche: A Journal of Entomology, 2012: 1–23. DOI: https://doi.org/10.1155/2012/636749
Ribas, CR, FA Schmidt, RRC Solar, RBF Campos, CL Valentim & JH Schoereder, 2012b. Ants as Indicators of the Success of Rehabilitation Efforts in Deposits of Gold Mining Tailings. Restoration Ecology, 20: 712–720. DOI: https://doi.org/10.1111/j.1526-100X.2011.00831.x
Schmidt, FA & RRC Solar, 2010. Hypogaeic pitfall traps: methodological advances and remarks to improve the sampling of a hidden ant fauna. Insectes Sociaux, 57: 261–266. DOI: https://doi.org/10.1007/s00040-010-0078-1
Schmidt, FA, CR Ribas & JH Schoereder, 2013. How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecological Indicators, 24: 158–166. DOI: https://doi.org/10.1016/j.ecolind.2012.05.031
Schmidt, FA, JH Schoereder & MDN Caetano, 2017. Ant assemblage and morphological traits differ in response to soil compaction. Insectes Sociaux, 64: 219–225. https://doi.org/10.1007/s00040-016-0532-9
Silvério, DV, PM Brando, JK Balch, FE Putz, DC Nepstad, C Oliveira-Santos & MMC Bustamante, 2013. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368: 20120427. DOI: https://doi.org/10.1098/rstb.2012.0427
Tabarelli, M, AV Aguiar, MC Ribeiro & JP Metzger, 2012. A conversão da floresta Atlântica em paisagens antrópicas: Lições para a conservação da diversidade biológica das florestas tropicais. Interciencia, 37: 88–92.
Vasconcelos, HL, JB Maravalhas, RM Feitosa, R Pacheco, KC Neves & AN Andersen, 2018. Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography, 45: 248–258. DOI: https://doi.org/10.1111/jbi.13113
Wilson, EO, 2003. Pheidole in the New World: A dominant, hyperdiverse ant genus. Harvard University Press, London.
Zambrano, J, CX Garzon-Lopez, L Yeager, C Fortunel, NJ Cordeiro & NG Beckman, 2019. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia, 191: 505–518. DOI: https://doi.org/10.1007/s00442-019-04505-x
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Access is unrestricted and the documentation available on the Creative Commons License (BY) (http://creativecommons.org/licenses/by/4.0/ ).
I declare for proper purposes that the copyright of the submitted text is now licensed in the form of the Creative Commons License, as specified above.
The copyright of the article belongs to the authors