Antennal ultrastructure of three species of Cyclocephala Dejean, 1821 (Coleoptera: Scarabaeidae)
DOI:
https://doi.org/10.12741/ebrasilis.v17.e1079Keywords:
Chemical communication, Chemoreceptors, Dynastinae, ScarabaeoideaAbstract
This study describes the antennal ultrastructure in Cyclocephala forsteri Endrodi, 1963, Cyclocephala melanocephala (Fabricius, 1775) and Cyclocephala tucumana Brethes, 1904 (Coleoptera: Scarabaeidae). Adult of Cyclocephala Dejean, 1821 specimens were collected using a light trap placed near a pasture area, segregated by gender, based on male-specific dilated pre-tarsomeres and preserved in 70% alcohol. Scanning electron microscopy (SEM) images of the antenna lamellae were obtained from ten specimens at Universidade Estadual Paulista (UNESP) in Ilha Solteira, SP, Brazil. We identified trichoid, chaetic, placoid, coeloconic, basiconic sensilla, and pores in antenna of all the species. Placoid sensilla were prevalent in the antennal lamellae. The antennae of C. forsteri females had 5,457 sensilla, of which 5,327 (97.62%) were placoid, 123 (2.25%) coeloconic, and seven (0.13%) basiconic, while the antennae of males showed 5,351 sensilla, with 5,238 (97.89%) being placoid, 100 (1.87%) coeloconic, and 13 (0.24%) basiconic. The antennae of C. melanocephala females presented 6,814 sensilla, with 6,581 (96.58%) being placoid, 231 (3.39%) coeloconic, and two (0.03%) basiconic; while those of males had 6,333 sensilla, with 6,023 (95.11%) being placoid and 310 (4.89%) coeloconic. Finally, the antennae of C. tucumana females had 1,981 sensilla, with 1,845 (93.13%) being placoid, 127 (6.42%) coeloconic, and nine (0.45%) basiconic; while the antennae of males had 3,756 sensilla, with 3,656 (97.34%) being placoid, 99 (2.64%) coeloconic, and one (0.02%) basiconic. Overall, adults of C. melanocephala and C. tucumana presented dimorphism in the antennal sensilla.
References
Aragón-García, A & Morón, MA (2000). Los coleopteros Melolonthidae asociados a la rizosfera de la cana de azucar em Chietla, Puebla, Mexico. Folia Entomologica Mexicana, 108: 79-94.
Bohacz, C; Harrison, JG & Ahrens, D (2020). Comparative morphology of antennal surface structures in pleurostict scarab beetles (Coleoptera). Zoomorphology, 139: 327-346. https://doi.org/10.1007/s00435-020-00495-0
Camargo, AJA & Amabile, RF (2001). Identificação das principais pragas do girassol na região centro-oeste. EMBRAPA (Comunicado Técnico, 50).
Cavalcante, TRM; Naves, RV; Franceschinelli, EV & Silva, RP (2009). Polinização e formação de frutos em araticum. Bragantia, 68(1): 13-21. https://doi.org/10.1590/S0006-87052009000100002
Costa, MS; Silva, RJ; Paulino-Neto, HF & Pereira, MJB (2017). Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators. PlosOne, 12(2): e0171092. https://doi.org/10.1371/journal.pone.0171092
Costa, CG; Rodrigues, SR & Fuhrmann, J (2021). Morphology of the antennal sensilla of two species of Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, Cetoniinae). Revista Brasileira de Entomologia, 65(1): e20200078. https://doi.org/10.1590/1806-9665-RBENT-2020-0078
Coutinho, GV; Rodrigues, SR; Cruz, EC & Abot, AR (2011). Bionomic data and larval density of Scarabaeidae (Pleurosticti) in sugarcane in the central region of Mato Grosso do Sul, Brazil. Revista Brasileira de Entomologia, 55(3): 389-395. https://doi.org/10.1590/S0085-56262011005000038
Dias, BMR & Rodrigues, SR (2018). Floral association of adult Cyclocephala tucumana Brethes and Cyclocephala melanocephala (Fabricius) with passion flowers (Passiflora edulis Sims). EntomoBrasilis, 11(2): 144-146. https://doi.org/10.12741/ebrasilis.v11i2.738
Dieringer, G; Reyes-Castillo, P; Lara, M; Cabrera, RL & Loya, M (1998). Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeoidea; Melolonthidae): a cloud forest endemic beetle. Acta Zoológica Mexicana, (73): 145-153. https://doi.org/10.21829/azm.1998.73731732
Facundo, HT; Linn, CE; Villani, MG & Roelofs, WL (1999). Emergence, mating, and postmating behaviors of the oriental beetle (Coleoptera: Scarabaeidae). Journal of Insect Behavior, 12(2): 175-192. https://doi.org/10.1023/a:1020910732029
Favaris, AP; Tuler, AC; Silva, WD; Rodrigues, SR; Leal, WS & Bento, JMS (2020). (3S,6E)-nerolidol mediated rendezvous of Cyclocephala paraguayensis beetles in bottle gourd flowers. PlosOne, 15(12): e0235028. https://doi.org/10.1371/journal.pone.0235028
Fávila, ME (1988). Comportamiento durante el período de maduración gonádica em um escarabajo rodador (Coleoptera: Scarabaeidae; Scarabaeinae). Folia Entomológica Mexicana, 76: 55-64.
Gordon, RD & Anderson, DM (1981). The species of Scarabaeidae (Coleoptera) associated with sugarcane in South Florida. Florida Entomologist, 64(1): 119-131. https://doi.org/10.2307/3494604
Gottsberger, G (1989). Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Systematics and Evolution, 167(3-4): 165-187. https://doi.org/10.1007/bf00936404
Gottsberger, G; Silberbauer-Gottsberger, I; Seymour, RS & Dötterl, S (2012). Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207(2): 107-118. https://doi.org/10.1016/j.flora.2011.11.003
Keil, TA (1999). Morphology and development of the peripheral olfactory organs, pp. 6-44. In: Hansson, B. (Ed). Insect olfaction. Springer.
Kim, JY & Leal, WS (2000). Ultrastructure of pheromone-detecting sensillum placodeum of the Japanese beetle, Popillia japonica Newmann (Coleoptera: Scarabaeidae). Arthropod Structure & Development, 29(2): 121-128. https://doi.org/10.1016/S1467-8039(00)00022-0
Larsson, MC; Leal, WS & Hansson, BS (2001). Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). Journal of Insect Physiology, 47(9): 1065-1076. https://doi.org/10.1016/S0022-1910(01)00087-7
Leal, WS (1998). Chemical ecology of phytophagous scarab beetles. Annual Review of Entomology, 4: 39-61. https://doi.org/10.1146/annurev.ento.43.1.39
Leal, WS & Mochizuki, F (1993). Sex pheromone reception in the scarab beetle Anomala cuprea: enantiomeric discrimination by sensilla placodea. Naturwissenschaften, 80(6): 278-281. https://doi.org/10.1007/BF01135914
Maia, ACD & Schlindwein, C (2006). Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): a well-established pollination system in the northern Atlantic rainforest of Pernambuco, Brazil. Plant Biology, 8(4): 529-534. https://doi.org/10.1055/s-2006-924045
Maia, ACD; Gibernau, M; Carvalho, AT; Gonçalves, EG & Schlindwein, C (2013). The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae: Spathicarpeae). Biological Journal of the Linnean Society, 108(1): 22-34. https://doi.org/10.1111/j.1095-8312.2012.01985.x
Martínez, LC; Plata-Rueda, A; Zanuncio, JC & Serrão, JE (2013). Leucothyreus femoratus (Coleoptera: Scarabaeidae): Feeding and behavioral activities as an oil palm defoliator. Florida Entomologist, 96(1): 55-63. https://doi.org/10.1653/024.096.0107
Meinecke, CC (1975). Riechsensillen und Systematik der Lamellicornia (Insecta, Coleoptera). Zoomorphology, 82: 1-42. https://doi.org/10.1007/BF00995905
Moore, MR & Jameson, ML (2013). Floral associations of cyclocephaline scarab beetles. Journal of Insect Science, 13(100): 1-43. https://doi.org/10.1673/031.013.10001
Morón, MA (1996). Coleoptera Melolonthidae asociados con las flores de Hibiscus rosa-sinensis L. (Malvaceae) en la región de Xalapa, Veracruz, México. Giornale Italiano di Entomologia, 8: 111-123.
Munin, RL; Teixeira, RC & Sigrist, MR (2008). Esfingofilia e sistema de reprodução de Bauhinia curvula Benth. (Leguminosae: Caesalpinioideae) em cerrado no Centro-Oeste brasileiro. Revista Brasileira de Botânica, 31(1): 15-25. https://doi.org/10.1590/S0100-84042008000100003
Nagamine, RRVK; Costa, CG; Fuhrmann, J & Rodrigues, SR (2022). Antennal sensilla in Cyclocephala literata Burmeister, 1847 (Coleoptera: Scarabaeidae: Dynastinae). Biota Neotropica, 22(2): e20211292. https://doi.org/10.1590/1676-0611-BN-2021-1292
Nikonov, AA; Valiyaveettil, JT & Leal, WS (2001). A photoaffinity-labeled green leaf volatile compound 'tricks' highly selective and sensitive insect olfactory receptor neurons. Chemical Senses, 26(1): 49-54. https://doi.org/10.1093/chemse/26.1.49
Nóbrega, RL; Maia, ACD; Lima, CHM; Felix, KES; Souza, TB & Pontes, WJT (2022). Behavioral traits and sexual recognition: multiple signaling in the reproductive behavior of Cyclocephala distincta (Melolonthidae, Cyclocephalini). Anais da Academia Brasileira de Ciências, 94(1): e20200694. https://doi.org/10.1590/0001-3765202220200694
Nogueira, GAL; Rodrigues, SR & Tiago, EF (2013). Biological aspects of Cyclocephala tucumana Brethes, 1904 and Cyclocephala melanocephala (Fabricius, 1775) (Coleoptera: Scarabaeidae). Biota Neotropica, 13(1): 86-90. https://doi.org/10.1590/S1676-06032013000100009
Ochieng, SA; Robbins, PS; Roelofs, WL & Baker, TC (2002). Sex pheromone reception in the scarab beetle Phyllophaga anxia (Coleoptera: Scarabaeidae). Annals of the Entomological Society of America, 95(1): 97-102. https://doi.org/10.1603/0013-8746(2002)095[0097:SPRITS]2.0.CO;2
Oliveira, HN & Ávila, CJ (2011). Ocorrência de Cyclocephala forsteri em Acronomia aculeata. Pesquisa Agropecuária Tropical, 41(2): 293-295. https://doi.org/10.5216/pat.v41i2.8769
Renou, M; Tauban, D & Morin, JP (1998). Structure and function of antennal pore plate sensilla of Oryctes rhinoceros (L.) (Coleoptera: Dynastinae). International Journal of Insect Morphology and Embryology, 27(3): 227-233. https://doi.org/10.1016/S0020-7322(98)00014-2
Robbins, PS; Nojima, S; Polavarapu, S; Koppenhöfer, AM; Rodriguez-Saona, C; Holdcraft, RJ; Consolie, NH; Peck, DC & Roelofs, WL (2009). Sex pheromone of the scarab beetle Phyllophaga (Phytalus) georgiana (Horn). Journal of Chemical Ecology, 35(3): 336-341. https://doi.org/10.1007/s10886-009-9593-9
Rochat, D; Mohammadpoor, K; Malosse, C; Avand-Faghih, A; Lettere, M; Beauhaire, J; Morin, JP; Pezier, A; Renou, M & Abdollahi, GA (2004). Male aggregation pheromone of date palm fruit Stalk Borer Oryctes elegans. Journal of Chemical Ecology, 30(2): 387-407. https://doi.org/10.1023/b:joec.0000017984.26917.52
Rodrigues, SR; Gomes, ES & Bento, JMS (2014). Sexual dimorphism and mating behavior in Anomala testaceipennis. Journal of Insect Science, 14(210): 1-5. https://doi.org/10.1093/jisesa/ieu072
Rodrigues, SR; Morón, MA; Gomes, ES & Bento, JMS (2016). Morphology of immature stages and mating behavior in Liogenys fusca (Blanchard) (Coleoptera, Melolonthidae, Melolonthinae). Revista Brasileira de Entomologia, 60(4): 284-289. https://doi.org/10.1016/j.rbe.2016.06.005
Rodrigues, SR; Barbosa, CAF; Fuhrmann, J & Amaro, RA (2018). Mating behavior and description of immature stages of Cyclocephala melanocephala (Fabricius, 1775) (Coleoptera: Scarabaeidae: Dynastinae), identification key and remarks on known immatures of Cyclocephalini species. Revista Brasileira de Entomologia, 62(3): 205-219. https://doi.org/10.1016/j.rbe.2018.07.001
Romero-López, AA; Arzuffi, R; Valdez, J; Morón, MA; Castrejón-Gómez, V & Villalobos, FJ (2004). Sensory organs in the antennae of Phyllophaga obsoleta (Coleoptera: Melolonthidae). Annals of the Entomological Society of America, 97(6): 1306-1312. https://doi.org/10.1603/0013-8746(2004)097[1306:SOITAO]2.0.CO;2
Ruther, J (2004). Male-biassed response of garden chafer, Phyllopertha horticola L., to leaf alcohol and attraction of both sexes to floral plant volatiles. Chemoecology, 14(3): 187-192. https://doi.org/10.1007/s00049-004-0271-7
Ruther, J & Mayer, CJ (2005). Response of garden chafer, Phyllopertha horticola, to plant volatiles: from screening to application. Entomologia Experimentalis et Applicata, 115(1): 51-59. https://doi.org/10.1111/j.1570-7458.2005.00264.x
Saldanha, FG; Rodrigues, SR; Amaro, RA & Fuhrmann, J (2020). Description of mating behavior, life cycle, and antennal sensilla of Cyclocephala putrida Burmeister, 1847 (Coleoptera, Scarabaeidae, Dynastinae). Biota Neotropica, 20(3): e20200973. https://doi.org/10.1590/1676-0611-BN-2020-0973
Santos, V & Ávila, CJ (2007). Aspectos bioecológicos de Cyclocephala forsteri Endrodi, 1963 (Coleoptera: Melolonthidae) no estado do Mato Grosso do Sul. Revista de Agricultura, 82(3): 298-303. https://doi.org/10.37856/bja.v82i3.1470
Schneider, D (1964). Insect antennae. Annual Review of Entomology, 9: 103-122. https://doi.org/10.1146/annurev.en.09.010164.000535
Shao, KM; Sun, Y; Wang, WK & Chen, LA (2019). SEM study of antennal sensilla in Maladera orientalis Motschulsky (Coleoptera: Scarabaeidae: Melolonthinae). Micron, 119: 17-23. https://doi.org/10.1016/j.micron.2019.01.004
Shaughney, JM & Ratcliffe, BC (2015). A monographic revision of the genus Hoplopyga Thomson, 1880 (Coleoptera: Scarabaeidae: Cetoniinae: Gymnetini). The Coleopterists Bulletin, 69(4): 579-638. https://doi.org/10.1649/0010-065X-69.4.579
Silva, ER & Sazima, M (1995). Hawkmoth pollination in Cereus peruvianus, a columnar cactus from southeastern Brazil. Flora, 190(4): 339-343. https://doi.org/10.1016/S0367-2530(17)30674-6
Stensmyr, MC; Larsson, MC; Bice, S & Hanson, BS (2001). Detection of fruit and flower emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae). Journal of Computational Physics A, 187(7): 509-519. https://doi.org/10.1007/s003590100222
Tanaka, S; Yukuhiro, F & Wakamura, S (2006). Sexual dimorphism in body dimensions and antennal sensilla in the shite grub beetle, Dasylepida ishigakiensis (Coleoptera, Scarabaeidae). Applied Entomology and Zoology, 41(3): 455-461. https://doi.org/10.1303/aez.2006.455
Wakamura, S; Yasui, H; Akino, T; Yasuda, T; Fukaya, M; Tanaka, S; Maeda, T; Arakaki, N; Nagayama, A; Sadoyama, Y; et al. (2009). Identification of (R)-2-butanol as a sex attractant pheromone of the white grub beetle, Dasylepida ishigakiensis (Coleoptera: Scarabaeidae), a serious sugarcane pest in the Miyako Islands of Japan. Applied Entomology and Zoology, 44(2): 231-239. https://doi.org/10.1303/aez.2009.231
Ward, A; Moore, C; Anitha, V; Wightman, J & Rogers, DJ (2002). Identification of the sex pheromone of Holotrichia reynaudi. Journal of Chemical Ecology, 28(3): 515-522. https://doi.org/10.1023/A:1014535910946
Zarbin, PHG; Leal, WS; Ávila, CJ & Oliveira, LJ (2007). Identification of the sex pheromone of Phyllophaga cuyabana (Coleoptera: Melolonthidae). Tetrahedron Letters, 48(11): 1991-1992. https://doi.org/10.1016/j.tetlet.2007.01.075
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Access is unrestricted and the documentation available on the Creative Commons License (BY) (http://creativecommons.org/licenses/by/4.0/ ).
I declare for proper purposes that the copyright of the submitted text is now licensed in the form of the Creative Commons License, as specified above.
The copyright of the article belongs to the authors
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 465511/2014-7