Differences in wings may be sufficient to separate the sexes and two species of Gynaikothrips Zimmermann (Thysanoptera: Phlaeothripidae)?

Authors

DOI:

https://doi.org/10.12741/ebrasilis.v15.e992

Keywords:

Galling insects, Gynaikothrips ficorum, Gynaikothrips uzeli, morphological analysis and sexual dimorphism

Abstract

In this study, we use geometric morphometry to discriminate thrips of the species Gynaikothrips uzeli (Zimmerman) and Gynaikothrips ficorum (Marchal) and also to detect sexual dimorphism in these species. Two hundred individuals, one hundred females and one hundred males, from G. uzeli and G. ficorum, were used to verify sexual dimorphism. For interspecific differentiation, two hundred females were used, one hundred individuals of each species. It was possible to observe differences in the shape of the wing between sexes in both species. In G. uzeli, the first two main components explain 92.5% of the total variation of individuals. The first main component explains 87% and the second 5.5 of the total variation of individuals. For G. ficorum, the first two main components explain 78.2% of the total variation of individuals. The first principal component contributed with 62% and the second principal component with 16.2% of the variation of the shape of the wing. Besides, significant interspecific differences were observed in the shape of the wing, where the first two main components were sufficient to explain 86% of the total variation of the individuals. The first principal component explained 76.2% and the second 9.8% of the total variation of the individuals, being possible to verify differences in the shape of the wing of these two species. Geometric morphometry is a viable technique for assessing sexual dimorphism, as well as interspecific differences in the shape of the wings of these species, which are morphologically very similar.

References

Abd, SA, R Okail, SA Kathiar & N Mzahem, 2020. Diversity and Geographical Distribution of Sand Flies Phlebotomus papatasi (Diptera: Phlebotominae) by using Geometric Morphometric Technique from two Iraqi Provinces. Baghdad Science Journal, 17: 0754. DOI: https://doi.org/10.21123/bsj.2020.17.3.0754

Benítez, HA & HA Vargas, 2017. Sexual dimorphism and population differentiation in the Chilean Neotropical moth Macaria mirthae (Lepidoptera, Geometridae): a wing geometric morphometric example. Revista Brasileira de Entomologia, São Paulo, 61: 365-369. DOI: https://doi.org/10.1016/j.rbe.2017.06.003

Chaiphongpachara, T & S Laojun, 2019. Landmark-based geometric morphometric analysis of wings to distinguish the sex of Aedes mosquito vectors in Thailand. Biodiversitas Journal of Biological Diversity, 20: 419-424. DOI: https://doi.org/10.13057/biodiv/d200216

Espinoza-Donoso, S, M Angulo-Bedoya, D Lemic & H Benítez, 2020. Assessing the influence of allometry on sexual and non-sexual traits: an example in Cicindelidia trifasciata (Coleoptera: Cicindelinae) using geometric morphometrics. Zoologischer Anzeiger, 287: 61-66. DOI: https://doi.org/10.1016/j.jcz.2020.05.009

Godoy, RE, PHF Shimabukuro, TV dos Santos, FAC Pessoa, AEFL da Cunha, FKM Santos, ML Vilela, EF Rangel & EA Galati, 2018. Geometric morphometry of the head in sand flies (Diptera: Psychodidae: Phlebotominae), an alternative approach to taxonomy studies. Zootaxa, 4504: 566-576. DOI: https://doi.org/10.11646/zootaxa.4504.4.7

González-Rubio, C, FJ García-de León & R Rodríguez-Estrella, 2017. Morphological dimorphism varies across the endemic Xantus’ hummingbird (Hylocharis xantusii) genetic populations in the Baja California Peninsula. Acta zoológica mexicana, Xalapa, 33: 431-442. DOI: https://doi.org/10.21829/azm.2017.3331143

Grassi-Sella, ML, CA Garófalo & TM Francoy, 2018. Morphological similarity of widely separated populations of two Euglossini (Hymenoptera; Apidae) species based on geometric morphometrics of wings. Apidologie 49: 151–161. DOI: https://doi.org/10.1007/s13592-017-0536-0

Hernández, ML, JP Dujardin, DE Gorla & SS Catalá, 2015. Can body traits, other than wings, reflect the flight ability of Triatominae bugs? Revista da Sociedade Brasileira de Medicina Tropical, Uberaba, 48: 682-691. DOI: https://doi.org/10.1590/0037-8682-0249-2015

Hilbrant, M, I Almudi, DJ Leite, L Kuncheria, N Posnien, MDS Nunes & AP Mcgregor, 2014. Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic. BMC Ecology and Evolution, 14. DOI: https://doi.org/10.1186/s12862-014-0240-x

Horne, CR, AG Hirst & D Atkinson, 2019. A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia, 190: 343-353. DOI: https://doi.org/10.1007/s00442-019-04428-7

Kamimura, EH, MC Viana, M Lilioso, FHM Fontes, D Pires-Silva, C Valença-Barbosa, AL Carbajal-de-la-Fuente, E Folly-Ramos, VN Solferin, PJ Thyssen, J Costa & CE Almeida, 2020. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): the resolution of geometric morphometrics for populational structuring on a microgeographical scale. Parasites Vectors, 13: 455. DOI: https://doi.org/10.1186/s13071-020-04340-7

Klingenberg, CP, 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353-357. DOI: https://doi.org/10.1111/j.1755-0998.2010.02924.x

Lorenz, C, F Almeida, F Almeida-Lopes, C Louise, SN Pereira, V Petersen, PO Vidal, F Virginio & L Suesdek, 2017. Geometric morphometrics in mosquitoes: What has been measured? Infection, Genetics and Evolution, 54: 205-215. DOI: https://doi.org/10.1016/j.meegid.2017.06.029

Lyra, ML, LM Hatadani, AML de Azeredo-Espin & LB Klaczko, 2010. Wing morphometry as a tool for correct identification of primary and secondary New World screwworm fly. Bulletin of Entomological Research, 100: 19-26. DOI: https://doi.org/10.1017/S0007485309006762

Millan, C, R Fornel & GRP Moreira, 2018. Phenotypic plasticity in Heliconius erato (Lepidoptera: Nymphalidae) mandibles induced by different host plants (Passifloraceae). Revista Colombiana de Entomología, Bogotá, 44: 273-282. DOI: https://doi.org/10.25100/socolen.v44i2.7331

Miller, CW, GC Mcdonald & AJ Moore, 2016. The tale of the shrinking weapon: seasonal changes in nutrition affect weapon size and sexual dimorphism, but not contemporary evolution. Journal of Evolutionary Biology, 29: 2266-2275. DOI: https://doi.org/10.1111/jeb.12954

Mirth, CK, AW Frankino & AW Shingleton, 2016. Allometry and size control: what can studies of body size regulation teach us about the evolution of morphological scaling relationships? Current Opinion in Insect Science, 13: 93-98. DOI: https://doi.org/10.1016/j.cois.2016.02.010

Mound, L, C Wang & S Okajima, 1996. Observations in Taiwan on the Identity of the Cuban laurel thrips (Thysanoptera, Phlaeothripidae). Journal of the New York Entomological Society, 103: 185-190.

Mound, LA & R Marullo, 1996. The thrips of Central and South America: an introduction (Insecta: Thysanoptera). Memoirs on Entomology, International, 6: 1-488.

Ning, X, C Cheng, Y Xin & B WenJun, 2019. A research of color pattern variation on thorax of Coeliccia cyanomelas (Odonata: Coenagrionoidea: Platycnemididae). Journal of Environmental Entomology, 41: 566-573.

Nunes, LA, GB Passos, CA Carvalho & ED Araújo, 2013. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini). Brazilian Journal of Biology, 73: 887-893. DOI: https://doi.org/10.1590/S1519-69842013000400027

Pass, G, 2018. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Structure & Development, 47: 391-407. DOI: https://doi.org/10.1016/j.asd.2018.05.004

Retana-Salazar, AP, 2006. Variación morfológica del complejo Gynaikothrips uzeli-ficorum (Phlaeothripidae: Tubulifera). Métodos Ecología Sistemática, 1: 1-9.

Rohlf, FJ, 2006. TpsDig2, Digitize Landmarks and Outlines, version 2.10, Department of Ecology & Evolution, Stony Brook University, New York.

Santos, IS dos, DS Nogueira, I de Castro, JSG Teixeira, GS de Freitas & ML de Oliveira, 2021. Padrões morfológicos na venação alar de espécies de Tetragona Lepeletier & Serville, 1828 do grupo clavipes (Hymenoptera: Apidae: Meliponini). Entomological Communications, 3. DOI: https://doi.org/10.37486/2675-1305.ec03032

Sim, LX & RM Zuha, 2019. Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) development by landmark-based geometric morphometrics of cephalopharyngeal skeleton: a preliminary assessment for forensic entomology application. Egyptian Journal of Forensic Sciences, 9: 1-9. DOI: https://doi.org/10.1186/s41935-019-0158-y

Simões, RF, ABB Wilke, CRF Chagas, RMTD Menezes, L Suesdek, LC Multini, FS Silva, MG Grech, MT MarrellI & K Kirchgatter, 2020. Wing Geometric Morphometrics as a tool for the identification of Culex subgenus mosquitoes of Culex (Diptera: Culicidae). Insects, 11: 554-567. DOI: https://doi.org/10.3390/insects11090567

Souza, AV, LA Nunes, CS Machado, GS Sodré & CAL Carvalho, 2018. Sexual dimorphism and morphometric characterization of Centris tarsata Smith, 1874, Hymenoptera: Apidae in different environments. Acta Agronómica, Palmira, 67: 438-445. DOI: https://doi.org/10.15446/acag.v67n3.60099

Tree, DJ, 2012. First record of Gynaikothrips uzeli (Zimmermann) (Thysanoptera: Phlaeothripidae) from Australia. The Australian Entomologist, 39: 105-108.

Tree, DJ, LA Mound & AR Field, 2015. Host specificity studies on Gynaikothrips (Thysanoptera: Phlaeothripidae) associated with leaf galls of cultivated Ficus (Rosales: Moraceae) trees. Florida Entomologist, 98: 880-883. DOI: https://doi.org/10.1653/024.098.0310

Vergara, OP, HA Benítez, M Pincheira & V Jerez, 2014. Determinación del dimorfismo sexual en la forma corporal de Chiasognathus grantii (Coleoptera: Lucanidae). Revista Colombiana de Entomología, 40: 104–110.

Virginio, F, P Oliveira Vidal & L Suesdek, 2015. Wing sexual dimorphism of pathogen-vector culicids. Parasites & Vectors, 8: 159. DOI: https://doi.org/10.1186/s13071-015-0769-6

von Groll, E & LA Moura, 2017. Comparative morphology of two species of Caraguata Bechyné (Coleoptera, Chrysomelidae, Galerucinae, Galerucini). Iheringia, Série Zoologia, 107. DOI: https://doi.org/10.1590/1678-4766e2017009

Wang, M, L Wang, N Fu, C Gao, T Ao, L Ren & Y Luo, 2020. Comparison of Wing, Ovipositor, and Cornus Morphologies between Sirex noctilio and Sirex nitobei Using Geometric Morphometrics. Insects, 11: 84. DOI: https://doi.org/10.3390/insects11020084

Downloads

Published

2022-04-25

How to Cite

[1]
Santos, P.P. dos, Silva Junior, J.C. and Nunes, L.A. 2022. Differences in wings may be sufficient to separate the sexes and two species of Gynaikothrips Zimmermann (Thysanoptera: Phlaeothripidae)?. EntomoBrasilis. 15, (Apr. 2022), e992. DOI:https://doi.org/10.12741/ebrasilis.v15.e992.

Issue

Section

General Entomology

Most read articles by the same author(s)